bcpowmod

(PHP 5, PHP 7)

bcpowmodRaise an arbitrary precision number to another, reduced by a specified modulus

Opis

bcpowmod ( string $base , string $exponent , string $modulus [, int $scale = 0 ] ) : string

Use the fast-exponentiation method to raise base to the power exponent with respect to the modulus modulus.

Parametry

base

The base, as an integral string (i.e. the scale has to be zero).

exponent

The exponent, as an non-negative, integral string (i.e. the scale has to be zero).

modulus

The modulus, as an integral string (i.e. the scale has to be zero).

skala

Ten opcjonalny parametr służy do ustawienia liczby cyfr po kropce w wyniku. Jeśli pominięty, zostanie domyślnie ustawiony na skalę ustawioną globalnie przez funkcję bcscale() lub 0, jeśli nie zostanie ona ustawiona.

Zwracane wartości

Returns the result as a string, or NULL if modulus is 0 or exponent is negative.

Notatki

Informacja:

Because this method uses the modulus operation, numbers which are not positive integers may give unexpected results.

Przykłady

The following two statements are functionally identical. The bcpowmod() version however, executes in less time and can accept larger parameters.

<?php
$a 
bcpowmod($x$y$mod);

$b bcmod(bcpow($x$y), $mod);

// $a and $b are equal to each other.

?>

Zobacz też:

  • bcpow() - Podnosi liczbę o dużej precyzji do potęgi
  • bcmod() - Wykonuje dzielenie modulo liczby o dużej precyzji

add a note add a note

User Contributed Notes 3 notes

up
-1
laysoft at gmail dot com
13 years ago
I found a better way to emulate bcpowmod on PHP 4, which works with very big numbers too:

function powmod($m,$e,$n) {
    if (intval(PHP_VERSION)>4) {
        return(bcpowmod($m,$e,$n));
    } else {
        $r="";
        while ($e!="0") {
            $t=bcmod($e,"4096");
            $r=substr("000000000000".decbin(intval($t)),-12).$r;
            $e=bcdiv($e,"4096");
        }
        $r=preg_replace("!^0+!","",$r);
        if ($r=="") $r="0";
        $m=bcmod($m,$n);
        $erb=strrev($r);
        $q="1";
        $a[0]=$m;
        for ($i=1;$i<strlen($erb);$i++) {
            $a[$i]=bcmod(bcmul($a[$i-1],$a[$i-1]),$n);
        }
        for ($i=0;$i<strlen($erb);$i++) {
            if ($erb[$i]=="1") {
                $q=bcmod(bcmul($q,$a[$i]),$n);
            }
        }
        return($q);
    }
}
up
-1
ewilde aht bsmdevelopment dawt com
14 years ago
Versions of PHP prior to 5 do not have bcpowmod in their repertoire.  This routine simulates this function using bcdiv, bcmod and bcmul.  It is useful to have bcpowmod available because it is commonly used to implement the RSA algorithm.

The function bcpowmod(v, e, m) is supposedly equivalent to bcmod(bcpow(v, e), m).  However, for the large numbers used as keys in the RSA algorithm, the bcpow function generates a number so big as to overflow it.  For any exponent greater than a few tens of thousands, bcpow overflows and returns 1.

This routine will iterate through a loop squaring the result, modulo the modulus, for every one-bit in the exponent.  The exponent is shifted right by one bit for each iteration.  When it has been reduced to zero, the calculation ends.

This method may be slower than bcpowmod but at least it works.

function PowModSim($Value, $Exponent, $Modulus)
  {
  // Check if simulation is even necessary.
  if (function_exists("bcpowmod"))
    return (bcpowmod($Value, $Exponent, $Modulus));

  // Loop until the exponent is reduced to zero.
  $Result = "1";

  while (TRUE)
    {
    if (bcmod($Exponent, 2) == "1")
      $Result = bcmod(bcmul($Result, $Value), $Modulus);

    if (($Exponent = bcdiv($Exponent, 2)) == "0") break;

    $Value = bcmod(bcmul($Value, $Value), $Modulus);
    }

  return ($Result);
  }
up
-3
rrasss at gmail dot com
14 years ago
However, if you read his full note, you see this paragraph:
"The function bcpowmod(v, e, m) is supposedly equivalent to bcmod(bcpow(v, e), m).  However, for the large numbers used as keys in the RSA algorithm, the bcpow function generates a number so big as to overflow it.  For any exponent greater than a few tens of thousands, bcpow overflows and returns 1."

So you still can, and should (over bcmod(bcpow(v, e), m) ), use his function if you are using larger exponents, "any exponent greater than a few tens of thousand."
To Top