PHP 5.6.0 released

Exemples

Le processus basique consiste à définir des paramètres, soumettre des données d’entraînement pour la génération d'un modèle, puis, faire des prédictions basés sur ce modèle. Il y a un jeu par défaut de paramètres qui doivent donner des résultats avec la plupart des entrées, aussi, nous allons commencer par regarder du côté de ces données.

Les données sont soumises via un fichier, un flux ou un tableau. Si elles sont fournies via un fichier ou un flux, elles doivent contenir une ligne par exemple d’entraînement, ligne devant être formatée sous la forme d'une classe entière (habituellement 1 et -1), suivi par une séries de paires clés/fonctionnalités, dans un ordre croissant des fonctionnalités. Les fonctionnalités sont des entiers, et les valeurs, des nombres à virgules flottantes dans l'intervalle 0-1. Par exemple :

-1 1:0.43 3:0.12 9284:0.2

Dans un problème de classification de document, par exemple concernant le spam, chaque ligne doit représenter un document. Il doit y avoir 2 classes, -1 pour les spam, 1 pour les ham. Chaque fonctionnalité représente des mots, et les valeurs représentent l'importance de ces mots dans le document (par exemple le fréquence de rencontre de ces mots dans le document, avec le total dans le bon intervalle). Les fonctionnalités présentant la valeur 0 (i.e. le mot n'apparaît pas du tout dans le document) ne seront tout simplement pas inclues.

Dans mode tableau, les données doivent être passées sous la forme de tableaux de tableaux. Chaque sous-tableau doit avoir la classe comme premier élément, plus, clés => jeux de valeurs pour les paires de fonctionnalité/valeur.

Ces donnée sont passées à la fonction d’entraînement de la classe SVM, qui retournera un modèle SVM en cas de succès.

Une fois le modèle généré, il peut être utilisé pour faire des prédictions sur les données précédentes non vues. Elles peuvent être passées sous forme de tableau à la fonction de prédiction du modèle, dans le même format que précédemment, mais sans le libellé. La réponse sera la classe.

Les modèles peuvent être sauvegardés et restaurés à la demande, en utilisant les fonctions de sauvegarde et de chargement, qui prennent toutes les 2 comme argument le chemin vers le fichier correspondant.

Exemple #1 Entraînement depuis un tableau

<?php
$data 
= array(
 array(-
1=> 0.43=> 0.129284 => 0.2),
 array(
1=> 0.22=> 0.0194 => 0.11),
);

$svm = new SVM();
$model $svm->train($data);

$data = array(=> 0.43=> 0.129284 => 0.2);
$result $model->predict($data);
var_dump($result);
$model->save('model.svm');
?>

L'exemple ci-dessus va afficher quelque chose de similaire à :

int(-1)

Exemple #2 Entraînement depuis un fichier

<?php
 $svm 
= new SVM();
 
$model $svm->train("traindata.txt");
?>

add a note add a note

User Contributed Notes 1 note

up
0
6765419 at qq dot com
10 months ago
$data = array(
            array(-1, 1 =>170, 2 => 60),//-1表示男生,key 1表示身高,key 2表示体重
            array(-1, 1 =>180, 2 => 70),
            array(1, 1 => 160, 2 => 46),//1表示女生,key 1表示身高,key 2表示体重
            array(1, 1 => 155, 2 => 40),
        );
$svm = new SVM();
$model = $svm->train($data);
$data = array( 1 => 165, 2 =>60);//测试数据
$result = $model->predict($data);
echo var_export($result);
return;
To Top